Micrometer and nanometer-scale parallel patterning of ceramic and organic–inorganic hybrid materials

Abstract

This review gives an overview of the progress made in recent years in the development of low-cost parallel patterning techniques for ceramic materials, silica, and organic–inorganic silsesquioxane-based hybrids from wet-chemical solutions and suspensions on the micrometer and nanometer-scale. The emphasis of the discussion is placed on the application of soft-lithographic methods, but photolithography-aided patterning methods for oxide film growth are also discussed. In general, moulding-based patterning approaches and surface modification-based patterning approaches can be distinguished. Lateral resolutions well below 100 nm have been accomplished with some of these methods, but the fabrication of high-aspect ratio patterns remains a challenge.

Link

Micrometer and nanometer-scale parallel patterning of ceramic and organic–inorganic hybrid materials