Microcontact Printing for Creation of Patterned Lipid Bilayers on Tetraethylene Glycol Self-Assembled Monolayers

Abstract

Supported lipid bilayers (SLBs) formed on many different substrates have been widely used in the study of lipid bilayers. However, most SLBs suffer from inhomogeneities due to interactions between the lipid bilayer and the substrate. In order to avoid this problem, we have used microcontact printing to create patterned SLBs on top of ethylene-glycol-terminated self-assembled monolayers (SAMs). Glycol-terminated SAMs have previously been shown to resist absorbance of biomolecules including lipid vesicles. In our system, patterned lipid bilayer regions are separated by lipid monolayers, which form over the patterned hexadecanethiol portions of the surface. Furthermore, we demonstrate that α-hemolysin, a large transmembrane protein, inserts preferentially into the lipid bilayer regions of the substrate.

Link

Microcontact Printing for Creation of Patterned Lipid Bilayers on Tetraethylene Glycol Self-Assembled Monolayers