Biology

Dynamics of podosome stiffness revealed by atomic force microscopy

Abstract

Podosomes are unique cellular entities specifically found in macrophages and involved in cell–matrix interactions, matrix degradation, and 3D migration. They correspond to a core of F-actin surrounded at its base by matrix receptors. To investigate the structure/function relationships of podosomes, soft lithography, atomic force microscopy (AFM), and correlative fluorescence microscopy were used to characterize podosome physical properties in macrophages differentiated from human blood monocytes. Podosome formation was restricted to delineated areas with micropatterned fibrinogen to facilitate AFM analyses. Podosome height and stiffness were measured with great accuracy in living macrophages (578 ± 209 nm and 43.8 ± 9.3 kPa) and these physical properties were independent of the nature of the underlying matrix. In addition, time-lapse AFM revealed that podosomes harbor two types of overlapping periodic stiffness variations throughout their lifespan, which depend on F-actin and myosin II activity. This report shows that podosome biophysical properties are amenable to AFM, allowing the study of podosomes in living macrophages at nanoscale resolution and the analysis of their intimate dynamics. Such an approach opens up perspectives to better understand the mechanical functionality of podosomes under physiological and pathological contexts.

Link

Dynamics of podosome stiffness revealed by atomic force microscopy

Engineered 3D environments to elucidate the effect of environmental parameters on drug response in cancer

Abstract

Traditional in vitro models used for the development of anti-cancer drugs are based on the monolayer culture of cells, which has a limited predictivity of in vivo efficacy. A number of cell culture platforms have been developed in recent years to improve predictivity and further to elucidate the mechanisms governing the differing responses observed in vitro versus in vivo. One detrimental aspect of current in vitro models is their inability to decouple the effect of different extrinsic factors on the responsiveness of the cells to drug treatment. Here, we have used an engineered poly(dimethylsiloxane) (PDMS) microwell array as a reductionist approach to study the effect of environmental parameters, independently of each other. It is observed for MCF-7 breast cancer cells, that culture within the three-dimensional (3D) environment of the microwells alone had an effect on the response to Taxol and results in a reduction of cell death in comparison to cells cultured on flat substrates. Additionally the microwells allowed the response of single versus multicell clusters to be differentiated. It was found that the formation of cell–cell contacts alters the drug response, depending on the type of adhesive protein present. Thus, with this microwell platform it is revealed that the presence of cell–cell contacts in addition to the dimensionality and the matrix composition of the environment are important mediators of altered drug responses. In conclusion the microwell array can not only serve as a platform to reveal which parameters of the extracellular environment affect drug response but further the interdependence of these parameters.

Link

Engineered 3D environments to elucidate the effect of environmental parameters on drug response in cancer

Patterning of Peptide Nucleic Acids Using Reactive Microcontact Printing

Abstract

PNAs (peptide nucleic acids) have been immobilized onto surfaces in a fast, accurate way by employing reactive microcontact printing. Surfaces have been first modified with aldehyde groups to react with the amino end of the synthesized PNAs. When patterning fluorescein-labeled PNAs by reactive microcontact printing using oxygen-oxidized polydimethylsiloxane stamps, homogeneous arrays were fabricated and characterized using optical methods. PNA-patterned surfaces were hybridized with complementary and mismatched dye-labeled oligonucleotides to test their ability to recognize DNA sequences. The stability and selectivity of the PNA-DNA duplexes on surfaces have been verified by fluorescence microscopy, and the melting curves have been recorded. Finally, the technique has been applied to the fabrication of chips by spotting a PNA microarray onto a flat PDMS stamp and reproducing the same features onto many slides. The chips were finally applied to single nucleotide polymorphism detection on oligonucleotides.

Link

Patterning of Peptide Nucleic Acids Using Reactive Microcontact Printing

Page 11 of 35